a2 United States Patent

Perez

US009112898B2

US 9,112,898 B2
Aug. 18,2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)
(52)

(58)

SECURITY ARCHITECTURE FOR
MALICIOUS INPUT

Applicant: Verizon Patent and Licensing Inc.,
Basking Ridge, NJ (US)

Inventor: John Scott Perez, Tampa, FL (US)

Assignee: Verizon Patent and Licensing Inc.,
Basking Ridge, NJ (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 2 days.

Appl. No.: 14/085,910

Filed: Nov. 21, 2013
Prior Publication Data
US 2015/0143517 Al May 21, 2015
Int. CI.
HO04L 29/06 (2006.01)
U.S. CL
CPC e, HO4L 63/1441 (2013.01)

Field of Classification Search

CPC .. HOAL 63/1441; HOAL 63/1458; GOGF 21/55
USPC e 726/22
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2002/0199109 Al* 12/2002 Boomccevvviennen 713/188
2008/0109905 Al* 5/2008 Grosseetal. ... 726/23
2008/0127349 Al* 5/2008 Ormazabaletal. 726/25
2008/0148402 Al* 6/2008 Boginenietal. 726/22
2008/0320582 Al* 12/2008 Chenetal. ... 726/12
2011/0167493 Al* 7/2011 Songetal. ... 726/23
2012/0174217 Al1* 7/2012 Ormazabal 726/22
2013/0291107 Al* 10/2013 Marck etal. ... 726/23

* cited by examiner
Primary Examiner — Michael S McNally

(57) ABSTRACT

A computing device detects and mitigates malicious input at
the point of origin before such input invades a communication
network. A computing device receives, at an operating system
kernel, a first input string and stores, in a cache accessible to
the kernel, a copy of the first input string. The computing
device receives, by the operating system kernel, a second
input string and compares the copy of the first input string and
the second input string for redundancy before committing the
second input string to an application or communication inter-
face. The computer device rejects the second input when the
comparing indicates that the copy of the first input string and
the second input string are redundant.

20 Claims, 12 Drawing Sheets

800 g,

810/\,‘

ADD FIRST INPUT OF KERNEL TO

CACHE

¥

820 /\.¢1 RECEIVE SECOND INPUT AT KERNEL

¥

830 —’_,{

NORMALIZE FIRST AND/OR SECOND

INPUT

v

340 ’\z{ COMPARE NORMALIZED INPUTS

¥

350 m<

IS SECOND INPUT NC
REDUNDANT INPUTY

¥ YES

360 "\/’

REJECT SECOND INFUT

¥

87¢ /\/’

ADD COPY QF SECOND INPUT TO

CACHE

¥

880 /\.,{

COMMIT SECOND INPUT

US 9,112,898 B2

Sheet 1 of 12

Aug. 18,2015

U.S. Patent

LNILNOD
ANVAONNGEY

0T

— . Z-014)
SHOMLEN W | Amm%mmm omMﬁmmwo
HAAINQH —y SEITIIM
"SAINOD (-
INVGONNQ3Y - SANCD hzwmmmem
INVONNGTY
{1-011) _
ADIAIT ~
ONILAGNOD 4 w
INZINGD
INVONNGD

US 9,112,898 B2

Sheet 2 of 12

Aug. 18, 2015

U.S. Patent

ANZINOD
LANYONNGOZY

0et

071 _ (Z-0L1)
SMMCGALIN oo KW%M\/M.WWZ - @Zwmm%\wwv%ﬁunu
HAAIAOYd -\ SSITTIUIM

é

- R @ec!ssc
éﬁﬁﬂ&ﬁi PR

!

SWNOD
INYONNAZY

Ng‘g‘s.‘

SWINGD
INVONNGIY

"SWNOD .
INVONNOZY

{L-0L1)
I0IAZA ~—
SNILNIWCD

ANSINGD
INYONAGZY

US 9,112,898 B2

Sheet 3 of 12

Aug. 18, 2015

U.S. Patent

gec
{8
{012) -y 2 & &
g\l‘l\}
sng W & k4 ¥
154
WY

0%e
WHLSAS ONLLYYELO

LNALN0 BYFA
| LN
AR

HIINGIHOS
$SIT0Hd

TANYIA

/\

Ve Old

Bigioil]

N aoimeg
1 nduy usuy

US 9,112,898 B2

Sheet 4 of 12

Aug. 18, 2015

U.S. Patent

¥4
(3Ndo
{012} & & & 3
{}
snd k4 k4 A %
N
[l

WNALSAS ONILVHILO

\QYYANYLS

99z
1dLNG
JLNEN

¥92
EEINOIHOS
 SS300Hd |

07
LIND
SN

g

ity

| pewiueibory

[\

oy¢

B

| nd using

€< 9Old

US 9,112,898 B2

Sheet 5 of 12

Aug. 18, 2015

U.S. Patent

ir44
(N0
(g2} Y rY % F Y
;ilill‘l\\\‘lllil)ff
shg 3 - - &
(354
N i
{(ngz})
d¥
557 \\
WILSAS DNILYHELO — a5
b9e g
Rdino 1 e powweBoig
13NN 04¢ (81T " S W
QUVONYLSA LING B uonesddy
"dSNI $0 ued opedg
eaz mmJNM.WIOm ove
NS |owna]
SEE00Hd NG| uBkng

¢ Oid

US 9,112,898 B2

Sheet 6 of 12

Aug. 18, 2015

U.S. Patent

[3rd
{(8)iNd0
(oL} 7'y 7y % 'y
i~ e A AR
SN ¥ k4 ¥ hd
¢e
e

de "oid

052
WILSAS ONILLYHIA0

99¢
Andino
{LNdNI
THYUNYLES

:ﬂz.mﬂv_ PYITNAEHOSE LIND
S SO0 4 "dSNI

[

(1274
gy

| pawwesbosy

921AB(

nchay RN

| ST

US 9,112,898 B2

Sheet 7 of 12

Aug. 18, 2015

U.S. Patent

€ 9ld

Pee
FHOVD LNdNI

Q¢
FNAoKW
NOSRVANGDS

A4S
ERigieiei!
SNIZITYINHON

(8745

INIONI NOISIOZd

- Ol
(Sid344n9
LN

[}
HIAILA
TN

L0ANI

US 9,112,898 B2

Sheet 8 of 12

Aug. 18, 2015

U.S. Patent

099 ™

057~

Ovy

0ey ~m

02t ™

Oy~

X ¥AYE X INOS X, g LNdNI
X VLVQ INOS X, G 1NN
M1VQ X INOS, ¥ LN
S1VT INOS X, £ LNdNI
X VY3 INOS, Z LNdNI
V1va NOS, L LNdNI
*— (01g)
434408 LNdNI

US 9,112,898 B2

Sheet 9 of 12

Aug. 18, 2015

U.S. Patent

GLG G0% oov
)))
VIVO3INOS « VAYO JWNOS . K VIVE X NOS X,
LS oLy oivy
) \)
SLVAINOS, SLYQ GN0S, S AYQ GNOS,
OLEIRON NN g inan

g L10dNi

L LNdNI

US 9,112,898 B2

Sheet 10 of 12

Aug. 18, 2015

U.S. Patent

0V —{ VLIVIWOS. b 1NN

08 —— WIVAINOS, £ LNdNI

029 — .WIVXINOS, Z L0

0l — YIVO3WOS. L 101N
¥ (016)

¥344NE 1NN

US 9,112,898 B2

Sheet 11 of 12

Aug. 18, 2015

U.S. Patent

O Oy
» VAVIWNOS . HIYINGS. ¥ L0dN
024 029
» YAVIENGS . SLYKENOS, ¢ tNdi
1% (L9
SLYINOS, HIYOINOS. EANGNI
NOLLYZITYNRION g, (oLe)
HALOVHYHD

4408 LNdNI

US 9,112,898 B2

Sheet 12 of 12

Aug. 18, 2015

U.S. Patent

8 "Oid

ﬁ 1NN ONODIS LIKINOD T 069
JHOYD 008
OL LNdNI ONODES 40 AdOD aay ‘
m LN ONOOES 10334 T\ 098
534 &

& LNENT INVONDATY 05

ON 1NdNI ANGDIES S
SLNANI GSZITYINEON JHYANOD b 018
1AdNI .
ONODES HOMNY 1S4 3zrvinon | 988
TANHIY 1Y LNNI ONODES FAIZORY P 078
IHOYD ,
OL TENHIN 40 LdN 1suid aay | V8

US 9,112,898 B2

1
SECURITY ARCHITECTURE FOR
MALICIOUS INPUT

BACKGROUND

It is not uncommon for devices in a communication net-
work to be used for malicious purposes to attempt to com-
promise the network, thereby preventing legitimate devices
from enjoying the services of the network. Such an attack is
called a “denial-of-service” (DoS) attack, or if multiple
devices across the network are used, a “distributed denial-of-
service” (DDoS) attack. One approach for implementing a
DoS or DDoS attack includes overwhelming a target device
or network with external communications, so that it cannot
respond to legitimate traffic.

In other instances, devices in a communication network
may provide other forms of malicious content to contaminate
databases, blogs, and/or social media sites. As just one
example, external devices may supply extraneous content to
social media sites to alter context metadata that is used to
determine advertising content for the site. Such content is
often originated using software routines, such as bots. In
some instances, human input may also be used (e.g., in a
coordinated effort with multiple users) to provide extraneous
content.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are schematics illustrating an exemplary
implementation of concepts described herein;

FIGS. 2A-2D are diagrams of components of a computing
device of FIG. 1 in which systems and methods described
herein may be implemented;

FIG. 3 is a diagram of exemplary functional components of
the computing device of FIG. 1;

FIG. 4 is a diagram illustrating a type of data that may be
normalized by the computing device of FIG. 1;

FIG. 5 is a diagram illustrating a normalization process to
resolve integer injection that can be performed by the com-
puting device of FIG. 1;

FIG. 6 is a diagram illustrating another type of data that
may be normalized by the computing device of FIG. 1;

FIG. 7 is a diagram illustrating a normalization process to
resolve character substitution that can be performed by the
computing device of FIG. 1; and

FIG. 8 is a flow chart of an exemplary process for blocking
redundant input, according to implementations described
herein.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The following detailed description refers to the accompa-
nying drawings. The same reference numbers in different
drawings may identify the same or similar elements.

Systems and methods described herein may detect and
mitigate malicious input at a point of origin before such input
invades a communication network. The systems and methods
provide a buffering scheme to evaluate a checksum of content
before committing the content to an application or network
interface.

Failure to evaluate the checksum of content before com-
mitting the content (e.g., to an application or network inter-
face) can allow redundant injection of content (also referred
to herein as malicious content) into an application or commu-
nications network. These redundancies in content can be
demonstrated as part of database index degradation and per-

10

15

20

25

30

35

40

45

50

55

60

65

2

formance breakdown. The malicious content may look simi-
lar to normal data, except that it may have a dynamic com-
ponent that allows the exploitation of the computer
programming to let the redundant content pass into data
repositories. This storage of redundant content causes down-
stream issues that result in unnecessary expenses in the form
of' bandwidth, CPU, RAM, and storage consumption.

According to an implementation described herein, a com-
puting device may receive an initial input string at an operat-
ing system kernel and may store, in a cache accessible by the
kernel, a copy ofthe initial input string. The computing device
may later receive a second input string by the operating sys-
tem kernel. The computing device may compare the copy of
the initial input string and the second input string for redun-
dancy before committing the second input string (e.g., for use
by an application). If the comparison indicates that the copy
of'the first input string and the second input string are redun-
dant, the computing device may reject the second input.

FIGS. 1A and 1B illustrate an exemplary network environ-
ment 100 in which systems and/or methods described herein
may be implemented. As illustrated, network environment
100 may include computing devices 110-1 and 110-2 (re-
ferred to herein collectively as “computing devices 110” and
generically as “computing device 110), a provider network
120, and an access network 130. Devices and/or networks of
network environment 100 may interconnect via wired and/or
wireless links.

Computing device 110 may include one or more devices
capable of storing/executing applications and sending/receiv-
ing information (e.g., data, applications, etc.) via one or more
of'provider network 120 and access network 130. Computing
device 110 may include, for example, a personal computer, a
computer workstation, a tablet computer, a smartphone, a
laptop computer, a portable gaming system, or other types of
computation/communication devices.

Provider network 120 may include, for example, a local
area network (LAN), a private network (e.g., a company
intranet), a wide area network (WAN), a metropolitan area
network (MAN), or another type of network that enables
communication between computing devices 110 and/or other
devices (e.g., devices that provide services to computing
devices 110).

Access network 130 may include a communications net-
work that connects subscribed devices (e.g., mobile devices)
with provider network 120. In one implementation, access
network 130 may include an Internet Protocol (IP)-based
network. Generally, access network 130 may include at least
one radio access network capable of supporting wireless
communications to/from a mobile computing device 110
(e.g., computing device 110-2). The radio access network
may include, for example, a long-term evolution (LTE) net-
work or a network implemented in accordance with another
existing or future wireless access network standard.

Referring to FIG. 1A, computing devices 110 may be used
to provide redundant injection of content into an application
or communications network, such as access network 130,
provider network 120. The redundant content may be passed
through the communications network and may result in, for
example, database index degradation and performance break-
down. The redundant content may resemble typical data
being processed except the redundant content may have a
dynamic component that allows the exploitation of computer
programs (e.g., residing on devices in provider network 120)
to let them pass into data repositories. This additional data can
cause downstream issues that result in unnecessary expenses,
such as consumption of bandwidth, CPU, RAM, and storage.

US 9,112,898 B2

3

In some instances, detection of malicious content originat-
ing from computing device 110 may be detected at a down-
stream computer program. Generally, stateful inspection of
traffic through provider network 120 and/or access network
130 is not possible due to processing costs. Furthermore,
latency introduced from stateful inspection can negatively
impact the user experience. Also, the use of encryption meth-
ods completely negates the capability to perform stateful
inspection without violating user privacy. Thus, malicious
content that is sent from computing device 110 can provide
costly network impact even if the malicious content is even-
tually detected at a downstream system.

Referring to FIG. 1B, in implementations described herein,
computing device 110 may include an inspection unit to
perform inspection of input data and block injection of redun-
dant content before the content can enter provider network
120 and/or access network 130. Thus, redundant content can
be detected and prevented at the local computing device 110
before the content is passed through provider network 120
and/or access network 130, consuming network resources. In
some instances, computing device 110 may inspect and block
redundant content at the kernel level and, thus, prevent the
redundant content from consuming additional processing
resources and/or memory resources of computing device 110.

In FIGS. 1A and 1B, the particular arrangement and num-
ber of components of network environment 100 are illustrated
for simplicity. In practice there may be more computing
devices 110, provider networks 120, access networks 130,
and/or devices within the networks. For example, there may
be thousands of devices 110.

FIGS. 2A-2D are diagrams illustrating exemplary compo-
nents of computing device 110. Components of computing
device 110 may be implemented/installed as a combination of
hardware and software. As shown in FIG. 2A, computing
device 110 may include a bus 210, a central processing unit
(CPU) 220, a random access memory (RAM) 230, a human
input device 240, a programmed input interface 250, an oper-
ating system 260, a kernel 262, a process scheduler 264, a
standard input/output 266, and an inspection unit 270.

Bus 210 may permit communication among the compo-
nents of device 200, such as CPU 220 and RAM 230. CPU
220 may include one or more processors or MmiCroprocessors
that interpret and execute instructions. CPU 220 may include
one or more processors, microprocessors, application specific
integrated circuits (ASICs), field programmable gate arrays
(FPGAs), and/or other processing logic. RAM 230 may
include a random access memory (RAM) or another type of
dynamic storage device that stores information and instruc-
tions for execution by processing unit 220.

Human input device 240 may include a device that permits
auser to input information to device 200, such as a keyboard,
a keypad, a mouse, a pen, a touch screen, a microphone, one
or more biometric mechanisms, and the like. Programmed
input 250 may include an interface the enables input from a
peripheral device.

Operating system 260 may perform various support func-
tions for components of computing device 110. Operating
system 260 may provide interfaces between applications and
other components (e.g., human input device 240, pro-
grammed input 250, communication interfaces, etc.). In
another example, operating system 260 may provide a TCP/
1P stack to support communication applications. In addition,
operating system 260 may provide other functions, such as
thread management, memory management, storage manage-
ment, etc. Operating system 260 may include kernel 262 with
a process scheduler 264, and a standard input/output 266.

10

15

20

25

30

35

40

45

50

55

60

65

4

Kernel 262 may include hardware or a combination of
hardware and software to manage computing resources for
computing device 110, including CPU 220, RAM 230,
human input device 240, programmed input 250, communi-
cation interfaces, etc. Kernel 262 may include one or more
device drivers to allow applications to indirectly interact with
hardware of computing device 110. For example, kernel 262
may manage memory (e.g., RAM 230), control access to
computing device 110, perform input and output services
(e.g., for human input device 240 and/or programmed input
250), or allocate processing and/or device resources of com-
puting device 110.

Process scheduler 264 may manage scheduling of threads,
processes, and/or data flows to access processing and/or
device resources of computing device 110.

Standard input/output 266 may include a data stream or
read/write interface to/from a file, hardware resource, or
another process.

Inspection unit 270 may inspect an input stream for injec-
tion of redundant content into an application or communica-
tions network. Inspection unit 270 may evaluate a checksum
of input content before committing the content to other com-
ponents of computing device 110, such as CPU 220, operat-
ing system 260, or a network interface (e.g., for provider
network 120, access network 130, etc.).

FIGS. 2A-2D illustrate different implementations of
inspecting input to computing device 110. As shown in FIG.
2A, in one implementation, inspection unit 270 may evaluate
the entire input stream of standard input/output 266 main-
tained by kernel 262.

Referring to FIG. 2B, inspection unit 270 may evaluate
process-specific input from human input device 240 and/or
programmed input 250. For example, inspection unit 270 may
communicate with process scheduler 264 to detect and
inspect input only from particular processes. Thus, inspection
unit 270 may differentiate between, for example, input for a
web browser, a network stack application latched process,
and a local word processing application to focus resources
according to the higher-risk inputs.

Referring to FIG. 2C, inspection unit 270 may evaluate
input from human input device 240 and/or programmed input
250 for a specific application programmable interface (API)
280. For example, input from human input device 240 and/or
programmed input 250 may be provided for a specific part of
an application 290 (e.g., a particular field or input type) that
calls a particular API 280. Inspection unit 270 may differen-
tiate between inputs for different APIs associated with oper-
ating system 260 and inspect only input associated with, for
example, the particular API 280. As an example, the configu-
ration of FIG. 2C may be used to inspect input over a particu-
lar API, called by a web-based application when the web-
based application hooks to an ASIC chipset function locally,
to protect provider network 120 or a cloud-based application.

Referring to FIG. 2D, inspection unit 270 may be used in
conjunction with an agent 268 evaluate input from human
input device 240 and/or programmed input 250. Agent 268
may be associated with kernel 260 and may manage what
particular input is evaluated by inspection unite 270. For
example, inspection unit 270 may include programmable
logic processing (e.g., a Xeno chip, microprocessor, etc.) in
conjunction with agent 268 to management of inspection unit
270 resources.

As described herein, computing device 110 may perform
certain operations in response to CPU 220 executing software
instructions stored in a computer-readable medium, such as
RAM 230 or another memory component. A computer-read-
able medium may include a non-transitory tangible memory

US 9,112,898 B2

5

device. A memory device may be implemented within a
single physical memory device or spread across multiple
physical memory devices. The software instructions may be
read into the memory component from another computer-
readable medium or from another device via a communica-
tion interface. The software instructions stored in the memory
component may cause CPU 220 to perform processes
described herein. Alternatively, hardwired circuitry (e.g., for
inspection unit 270, kernel 262, etc.) may be used in place of
or in combination with software instructions to implement
processes described herein. Thus, implementations described
herein are not limited to any specific combination of hardware
circuitry and software.

Although FIGS. 2A-2D show exemplary components of
computing device 110, in other implementations, computing
device 110 may include fewer components, different compo-
nents, differently-arranged components, or additional com-
ponents than those depicted in FIGS. 2A-2D. Alternatively, or
additionally, one or more components of computing device
110 may perform one or more other tasks described as being
performed by one or more other components of computing
device 110.

FIG. 3 is a block diagram of exemplary functional compo-
nents of computing device 110. In one implementation, the
functions described in connection with FIG. 3 may be per-
formed by one or more components of computing device 110.
Some or all of the functional blocks of FIG. 3 may be
included, for example, as a hardware component (e.g., an
ASIC or FPGA). As another example, some of the functional
blocks of FIG. 3 may be included in an application (e.g.,
software) stored in random access memory 230 and executed
by processing unit 220. Functional components of computing
device 110 may generally permit computing device 110 to
detect and mitigate malicious input at the point of origin
before such input invades an application or a communication
network. As shown in FIG. 3, computing device 110 may
include an input kernel 300, an input buffer 310, and a deci-
sion engine 320.

Input kernel driver 300 may manage input to computing
resources for computing device 110, including processing
unit 220, memory 230, and/or communication interface 260.
For example, input kernel driver 300 may include a process
that manages input and/or output requests from applications
and/or other software processes and converts the input and/or
output requests into processing instructions for processing
unit 220. Additionally, when input from input device 240 is
detected, input kernel driver 300 may process the input event.
In one implementation, input kernel driver 300 may place the
detected input into input buffer 310 associated with OS kernel
222. In another implementation, input kernel driver 300 may
place detected input into another location associated with
memory 230. In one implementation, functions of input ker-
nel driver 300 may correspond to one or more of kernel 262,
process scheduler 264, or standard input/output 266 of FIG. 2.

Input butfer 310 may receive input data from input kernel
driver 300. In one implementation, input buffer 310 may
queue input data for inspection (e.g., by decision engine 320)
before the input data is committed to other resources of com-
puting device 110. In one implementation, input buffer 310
may correspond to standard input/output 266 of FIG. 2.

Decision engine 320 may inspect data from input buffer
310 to determine if the input includes redundant data. In one
implementation, one or more functions of decision engine
320 may be performed by inspection unit 270. Decision
engine 320 may include a normalizing module 322, an input
cache 324, and a comparison module 326. Generally, decision
engine 320 may monitor input buffer 310 at particular inter-

10

15

20

25

30

35

40

45

50

55

60

65

6

vals to determine whether an input event has been placed in
input buffer 310. Alternatively, decision engine 320 may
receive an indication from input kernel driver 300 that an
input event has been placed in input buffer 310. If decision
engine 320 detects redundant input data, decision engine 320
may reject the redundant input as malicious. For example,
decision engine 320 may simply drop the input data from
input buffer 320 without committing the input data to other
resources. In another example, decision engine 320 may gen-
erate an alert or error message to indicate that malicious input
has been detected.

Normalizing module 322 may apply one or more algo-
rithms to normalize data streams (e.g., strings of characters or
integers) extracted from input bufter 310. Generally, normal-
izing module may convert data strings into a common format
to allow for detection of similar data that would otherwise
pass through a traditional checksum. According to implemen-
tations described herein, normalizing module 322 may be
included as a software component, as hardware (e.g., an ASIC
chipset), or as combination of hardware and software.

Input cache 324 may store normalized input strings gener-
ated by normalizing module 322. The normalized input
strings in input cache 324 may be used by comparison module
326 to compare against subsequent input strings that may be
generated, for example, by software or standard human input.
In another implementation, input cache 324 may store initial
input in its initial format. Input cache 324 may be includes as
software and/or hardware.

In one implementation, entries (e.g., normalized or non-
normalized input strings) in input cache 324 may have an
expiration time. For example, if a cache entry is not used in
comparison with another input sting within a certain time
(e.g., between one and five minutes or another time period)
the entry may be removed from cache 324. Additionally,
entries that are referenced for comparison may be given addi-
tional time in cache 324 up to a maximum time (e.g., up to ten
or twenty minutes). For example, each reference of a cache
entry may reset that entry’s cache time limit, up to the maxi-
mum total cache time. In another implementation, input
cache 224 may include a fixed storage space that may be
overwritten from oldest to newest (e.g., a first-in-first-out
(FIFO) structure). Additionally, cache 324 may store static
entries that may not expire from cache 324.

Comparison module 326 may perform comparisons of
input strings extracted from input buffer 310 and/or stored in
input cache 324. In one implementation, when comparison
module 326 identifies matching input, comparison module
326 may provide a flag or error indication to prevent entry of
malicious input. Stopping the ability of the malicious data to
be transmitted into computing device 110 and onto provider
network 120 or access network 130 may prevent or inhibit
downstream consumption of resources from occurring. The
downstream resources include bandwidth, web services,
middleware, back end computing, data storage, data
archiving, etc. In an implementation, comparison module 326
may identify redundant input based on a 100% match of
normalized data strings. In another implementation, compari-
son module 326 may identify redundant input based on a
probability of less than a 100% match of normalized or unal-
tered data strings.

FIG. 4 is a diagram illustrating one type of data that may be
normalized by normalizing module 322 of computing device
110. As shown in FIG. 4, different input strings 410-460 of an
input stream (i.e., “input 1,” “input 2,” . . . “input 6”) may be
extracted from input buffer 310. The input stream may rep-
resent, for example, stream input/output across a computer
program being executed on computing device 110.

US 9,112,898 B2

7

In comparison with an initial input string 410 (e.g., input 1,
“SOME DATA”), one of the input strings 420 (“input 2”) may
have redundancy from left to right with additional data, such
as an integer or symbol (i.e., “SOME DATA X”), to exploit
traditional checksum routines. Similarly, another one of the
input strings 430 (“input 3””) may have redundancy from right
to left with additional data (i.e., “X SOME DATA”). A dif-
ferent one of the input strings 440 (“input 4”) may have
convergence around additional data (i.e., “SOME X DATA”);
while still another one of the input strings 450 (“input 5””) may
have divergence around additional data (i.e., “X SOME
DATA X”). In other cases, additional data may be included in
one of the buffer streams 460 (“input 6°) in multiple positions
(ie., “X SOME X DATA X*).

In the example of FIG. 4, assume input string 410 (e.g.,
“SOME DATA”) is initially input into input buffer 310. Sub-
sequently, a nearly identical string, input string 420, is input
later in time but with a suffix appendage to the string as
“SOME DATA X.” A traditional checksum of input stream
420 against input stream 410 may fail, thus letting the redun-
dant content of input stream 420 be passed and injected into
downstream resources (e.g., an application on computing
device 110, provider network 120, access network 130, a
cloud computing structure, etc.) with no benefit.

Each of input strings 420-460 may be referred to as an
integer injection problem. In other words, the introduction of
any of input streams 420-460 may result in disruption of the
normal computer design of many computer programs. The
redundant data may be viewed as spam that can damage
and/or corrupt the performance of database and computer
language index functionality (e.g., in computing device 110
or in downstream devices). Such damage and/or corruption
may be particularly evident in complex hashing of data. In
other instances, the redundant data may be evidenced as a
Denial-of-Service (DOS) attack.

According to one implementation, decision engine 320
may apply an algorithm to resolve the integer injection prob-
lem. FIG. 5 is a diagram illustrating a normalization process
to resolve integer injection that can be performed by decision
engine 320 of computing device 110. In particular, consistent
with embodiments described herein, decision engine 320
may extract the integers (e.g., “X”) that differ from the data
structure for the initial input stream 410. In FIG. 5, input
stream 460 from input 6 is used as a detailed illustration
herein because it includes all of the scenarios of input strings
420-450.

As shown in FIG. 5, extraneous integers may be removed
from the character string value of input stream 460 to provide
a character normalized string 505. The remaining spaces and
symbols may then be stripped out of both initial input stream
410 and character normalized string 505 to provide a final
normalization 510 (i.e., “SOMEDATA”) of initial input
stream 410 and a final normalization 515 (i.e., “SOME-
DATA”) of input stream 460. In one implementation, decision
engine 320 can be run in a profile so that multiple web session
IDs and IP addresses from spoofing do not register as difter-
ent standard input through the input buffer 310 for the appli-
cation(s) involved.

FIG. 6 is a diagram illustrating another type of data that
may be normalized by decision engine 320 of computing
device 110. As shown in FIG. 6, different input strings 610-
640 of aninput stream (i.e., “input 1,” “input 2,” “input 3,” and
“input 4”°) may be extracted from input buffer 310. The input
stream may represent stream input/output across a computer
program being executed on computing device 110.

In comparison with an initial input string 610 (e.g., input 1,
“SOMEDATA”), each of the input strings 620-640 may have

10

15

20

25

30

35

40

45

50

55

60

65

8

near-redundancy but with replacement or elimination of a
character to exploit traditional checksum routines.

In the example of FIG. 6, assume input string 610 is ini-
tially input into input bufter 310. Subsequently, nearly iden-
tical strings, input string 620 (“SOMEXATA”), input string
630 (“SOMEYATA”), and input string 640 (“SOMEATA”)
are input later in time. A traditional checksum of input strings
620-640 against input string 610 may fail, thus letting the
redundant content of input strings 620-640 become injected
into downstream resources. It may be presumed that input
strings 620-640 are designed to consume computing
resources downstream and have no beneficial information
technology value. Input strings 620-640 may have systemic
impacts to consumers who wish to legitimately use affected
applications, for example, within a cloud computing environ-
ment.

According to an implementation, decision engine 320
(e.g., normalizing module 322) may apply an algorithm to
resolve the character substitution/elimination problems. FI1G.
7 is a diagram illustrating a normalization process to resolve
character substitution that can be performed by decision
engine 320 of computing device 110.

As shown in FIG. 7, input string 620 may be checked by
comparing newer input (e.g., input string 620, “input 2”’) one
character at a time against earlier cached input (e.g., input
string 610, “input 1”). The earlier input string 610 (i.e., “input
1”) in the cache (e.g., input cache 324) can serve as a standard
relative to comparison for spamming. In the particular
example of FIG. 7, character-by-character comparison of the
first four characters (i.e., “DATA”) match 100% until the
character “X” is reached at the fifth position in the second
input buffer.

When decision engine 320 encounters the inconsistency at
the fifth character, a logic decision is made relative to position
comparison. The next character is compared in the string and
the single point character is not checked. The result is a 100%
match of the strings when the fifth character (e.g.,
“SOMEATA”) is omitted. Based on probabilities, “input 2”
may be identified as character injection into the standard
input string and scores 100%, thus resulting in decision
engine 320 flagging the input as redundant input.

Still referring to FIG. 7, in another input scenario, the
removal of characters may have occurred, instead of injection
of characters. For example, input string 640 may be checked
by comparing newer input (e.g., input string 640, “input 4”)
one character at a time against earlier cached input (e.g., input
string 610, “input 17). As with the previous comparison, the
first four characters (i.e., “DATA”) match 100% until the
character “A” is reached at the fifth position in the input string
640. When decision engine 320 encounters the inconsistency
at the fifth character, a virtual fork in the algorithm can be
introduced to resolve inconsistency. The score (e.g., a match-
ing probability score) of adjacent characters in input string
640 is checked to a shift in the window for the standard input
string 610 by n+1 characters. Thus, comparison of character
normalization 710 (e.g., “SOMEATA”) and character nor-
malization 740 (e.g., “SOMEATA”) yields a match 100%
match. The comparison may be performed in a way that takes
into consideration the number of characters (i.e., “n”)
removed in the glide patch for the strings when determining a
matching probability score.

Character elimination can grow with valid deviation in the
content. This can be resolved simply by limiting the number
of the characters in the injection algorithm such that actual
phrases are not being removed (i.e. valid words) and a string
check against a cached dictionary to halt the virtual fork of the
algorithm can occur when valid word injection is occurring.

US 9,112,898 B2

9

FIG. 8 depicts a flow chart of an exemplary process 800 for
blocking redundant input according to implementations
described herein. In one implementation, process 800 may be
performed by one or more components of computing device
110.

As illustrated in FIG. 8, process 800 may include adding a
first input from a kernel to a cache (block 810), and receiving
a second input at the kernel (block 820). For example, com-
puting device 110 may receive an input string from an appli-
cation or user interface. Input kernel driver 300 may buffer the
input string, and decision engine 320 may add a copy of the
buffered input into input cache 324. A second input string
may be subsequently received at input kernel driver 300.

Process 800 may also include normalizing the first and/or
second input (block 830) and comparing the normalized
inputs (block 840). For example, computing device 110 (e.g.,
decision engine 320) may apply one or more algorithms, such
as those described in connection with FIGS. 4-7, to normalize
an initial input string or any subsequent input string to permit
comparison.

Process 800 may further include determining if the second
input is redundant input (block 850). For example, decision
engine 320 may compare the subsequent input string with the
initial input string stored in input cache 324. According to
implementations described herein, decision engine 320 may
perform the comparison before committing the subsequent
input string.

If the second input is redundant input (block 850—YES),
the second input may be rejected (block 860). For example,
when the comparison indicates that the copy of the first input
string and the subsequent input string are redundant, decision
engine 320 may reject the subsequent input string as mali-
cious input. In one implementation, decision engine 320 may
simply deny entry of the subsequent input string. In another
implementation, decision engine 320 may generate an alert or
error message to indicate that malicious input has been
detected.

If the second input is not redundant input (block 850—
NO), a copy of the second input may be added to the cache
(block 870), and the second input may be committed (block
880). For example, when the comparison indicates that the
copy of the first input string and the subsequent input string
are not redundant, decision engine 320 may simply commit
the subsequent input string and add a copy of the subsequent
input string to input cache 324 for use in future comparisons.

Systems and methods described herein may detect and
mitigate malicious input at the point of origin before such
input invades a communication network. A computing device
may receive, at an operating system kernel, a first input string
and may store, in a cache accessible to the kernel, a copy of
the first input string. The computing device may receive, at
the operating system kernel, a second input string and may
compare the copy of the first input string and the second input
string for redundancy before committing the second input
string. The computer device may reject the second input when
the comparing indicates that the copy of the first input string
and the second input string are redundant.

In the preceding specification, various preferred embodi-
ments have been described with reference to the accompany-
ing drawings. It will, however, be evident that various modi-
fications and changes may be made thereto, and additional
embodiments may be implemented, without departing from
the broader scope of the invention as set forth in the claims
that follow. The specification and drawings are accordingly to
be regarded in an illustrative rather than restrictive sense. For
example, while a series of blocks has been described with

10

15

20

25

30

35

40

45

50

55

60

65

10
respect to FIG. 8, the order of the blocks may be modified in
other implementations. Further, non-dependent blocks may
be performed in parallel.

It will be apparent that different aspects of the description
provided above may be implemented in many different forms
of software, firmware, and hardware in the implementations
illustrated in the figures. The actual software code or special-
ized control hardware used to implement these aspects is not
limiting of the invention. Thus, the operation and behavior of
these aspects were described without reference to the specific
software code—it being understood that software and control
hardware can be designed to implement these aspects based
on the description herein.

Further, certain portions of the invention may be imple-
mented as a “component” or “system” that performs one or
more functions. These components/systems may include
hardware, such as a processor, an ASIC, or a FPGA, or a
combination of hardware and software.

No element, act, or instruction used in the present applica-
tion should be construed as critical or essential to the inven-
tion unless explicitly described as such. Also, as used herein,
the article “a” and “one of”’ is intended to include one or more
items. Further, the phrase “based on” is intended to mean
“based, at least in part, on” unless explicitly stated otherwise.

What is claimed is:

1. A method, comprising:

receiving, at a kernel of an operating system on a comput-

ing device, a first input string of content from a particular
process of multiple different processes for the operating
system,

storing, in a cache accessible by the kernel, a copy of the

first input string;

receiving, at the kernel, a second input string of content

from the particular process;

comparing, at the kernel and before committing the second

input string to an application or communication inter-
face of the computing device, the copy of the first input
string and the second input string for redundant content;
and

rejecting, by the computing device, the second input when

the comparing indicates that the copy of the first input
string and the second input string have redundant con-
tent.

2. The method of claim 1, wherein the first input string and
the second input string are generated from one or more appli-
cations on the computing device.

3. The method of claim 1, wherein the storing the copy of
the first input string includes storing the copy of the first input
string for up to a variable expiration time.

4. The method of claim 1, wherein storing a copy of the first
input string includes applying a profile to associate the first
input string with multiple web session identifiers or Internet
protocol (IP) addresses.

5. The method of claim 1, wherein comparing the copy of
the first input string and the second input string for redun-
dancy includes applying algorithms to detect, in the second
input string when compared with the copy of the first input
string, instances of:

integer insertion,

character substitution, and

character deletion.

6. The method of claim 1, wherein rejecting the second
input includes rejecting the second input before the second
input string is provided to an application.

US 9,112,898 B2

11

7. The method of claim 1, further comprising:

providing the second input string to an application, when
the comparing indicates that the copy of the first input
string and the second input string are not redundant.

8. The method of claim 1, further comprising:

storing, in the cache accessible by the kernel, the second

input string, when the comparing indicates that the copy
of'the firstinput string and the second input string are not
redundant.

9. The method of claim 1, wherein the first input string and
the second input string include human input via a user inter-
face on the computing device.

10. The method of claim 1, wherein the comparing the copy
of the first input string and the second input string is per-
formed by an application specific integrated circuit (ASIC)
chipset.

11. A computing device, comprising:

a memory to store instruction; and

one or more processors configured to execute the instruc-

tions in the memory to:

receive, at an operating system kernel, a first input string
of content from a particular process of multiple dif-
ferent processes for the operating system,

store, in a portion of the memory accessible to the oper-
ating system kernel, a copy of the first input string,

receive, at the operating system kernel, a second input
string of content from the particular process,

compare, before committing the second input string
from the operating system kernel to other components
of computing device, the copy of the first input string
and the second input string for redundant content, and

reject, before committing the second input string from
the operating system kernel to other components of
computing device, the second input when the com-
paring indicates that the copy of the first input string
and the second input string are redundant.

12. The computing device of claim 11, wherein, when
rejecting the second input, the one or processors is further
configured to:

generate a message to indicate that redundant input data

has been detected.

13. The computing device of claim 11, wherein the one or
more processors includes an application specific integrated
circuit (ASIC) to compare the copy of the first input string and
the second input string.

14. The computing device of claim 11, wherein the one or
more processors includes software to compare the copy of the
first input string and the second input string.

15. The computing device of claim 11, wherein, when
comparing the copy of the first input string and the second
input string, the one or more processors are configured to:

normalize the copy of the first input string to create a

normalized first input string,

normalize the second input string to create a normalized

second input string, and

compare the normalized first input string and the normal-

ized second input string.

15

20

25

40

50

12

16. The computing device of claim 15, wherein, when
normalizing the second input string, the one or more proces-
sors are further configured to:

eliminate inserted integers, symbols, or spaces from the

second input string.
17. The computing device of claim 11, wherein, when
comparing the copy of the first input string and the second
input string, the one or more processors are configured to:
perform a character-by-character comparison of the sec-
ond input string with the copy of the first input string,

identify one of a character substitution or character elimi-
nation from the second input string based on the char-
acter-by-character comparison,

removing, from at least one of the second input string and

the copy of the first input string, input corresponding to
the substituted character position or the eliminated char-
acter position to create a normalized first input string and
a normalized second input string, and

evaluate redundancy of the normalized second input string

against the normalized first input string.

18. A non-transitory computer-readable medium compris-
ing computer-executable instructions, the computer-readable
medium comprising one or more instructions to:

receive, at an operating system kernel, a first input string of

content from a particular process of multiple different
processes for the operating system;

store, in a portion of memory accessible to the operating

system kernel, a copy of the first input string;

receive, at the operating system kernel, a second input

string of content from the particular process;

compare, before committing the second input string from

the operating system kernel to other components of a
computing device that includes the kernel, the copy of
the first input string and the second input string for
redundant content; and

reject, before committing the second input string from the

operating system kernel to other components of a com-
puting device that includes the kernel, the second input
when the comparing indicates that the copy of the first
input string and the second input string are redundant.

19. The non-transitory computer-readable medium of
claim 18, further comprising one or more instructions to:

generate a message to a user to indicate that redundant

input data has been detected, when the comparing indi-
cates that the copy of the first input string and the second
input string are redundant.

20. The non-transitory computer-readable medium of
claim 18, further comprising one or more instructions to:

store, in the portion of the memory accessible to the kernel,

the second input string, when the comparing indicates
that the copy of the first input string and the second input
string are not redundant; and

provide the second input string to an application, when the

comparing indicates that the copy of the first input string
and the second input string are not redundant.

#* #* #* #* #*

